• If you are having problems logging in please use the Contact Us in the lower right hand corner of the forum page for assistance.

CJD Death in Utah

Help Support Ranchers.net:

A

Anonymous

Guest
This article is from the Utah Daily Herald- Not sure of the credibility or veracity of all the info- but it sure can't be good for beef demand......

Friday, February 10, 2006
CJD death in Utah: Eureka widow looks for answers

--------------------------------------------------------------------------------
HEIDI TOTH - Daily Herald
A Eureka man had the only confirmed case of Creutzfeldt-Jakob Disease, commonly known as the human form of mad cow disease, in Utah last year.

Max Sorensen died on Dec. 30 at age 62, just five weeks after doctors at the University of Utah diagnosed him with the degenerative brain disorder. He was autopsied and quickly buried in a sealed metal casket, without being embalmed because of the risk it would present.

The worst part of the devastating ordeal for his wife, Julie Sorensen, is the uncertainty. She's not sure when he got the disease or how he got it, and she's not getting much help from the doctors, because they don't know much more.

"I don't think they have any idea," she said. "They know so very little about it they really can't give us any definite answers."

CJD is most commonly known as the human form of mad cow disease, but most of the cases are unrelated to the bovine disease. The disease is rare; about one in a million people worldwide have it. Most have the sporadic type; they have no known risk factors but got it anyway. It's not contagious except through contact with an infected brain, spinal fluid or nervous tissue.

Sorensen's death was the first case in Utah in the past few years. The state average is about two deaths a year, said Dr. Susan Mottice, an epidemiologist for the Utah Department of Health. Some years there are several deaths, while other years there aren't any. CJD is a neurological disease caused by infectious prions, a type of a normally harmless protein in the body. When a prion mutates to become infectious, the person has CJD, even though it can remain dormant for up to 40 years, according to the National Institutes of Health.

Early symptoms of the disease include problems with muscle coordination, personality changes and impaired vision. As it gets worse an infected person can have involuntary muscle jerks, blindness, weakness in arms and legs and eventually a coma.

"You would see a rapid deterioration in things like motor skills, speech and the ability to care for oneself," Mottice said. "To some degree it might resemble Alzheimer's, except it's more severe and it would progress much more rapidly."

About 85 percent of CJD cases are sporadic; another 5 to 10 percent are genetic, according to the National Prion Center at Case Western Reserve University. The rest are acquired through the transplant of infected tissue, contact with infected tissue or with contaminated instruments or the ingestion of contaminated meats. Trying to protect people from this form of the disease is why United Blood Services and the American Red Cross stopped accepting blood donations from people who have spent a significant consecutive amount of time in countries with a higher incidence of degenerative brain diseases.

Sorensen is suspected to have had a sporadic form of the disease, although Julie Sorensen and her family think it might be related to his hunting habit. She believes handling animals' horns could have been what got her husband sick.

"We all feel that this has come from deer, we really do," she said.

Chronic wasting disease, another prion-caused degenerative disorder, has been found in Utah deer as recently as October, according to the Utah Division of Wildlife Resources. Doctors don't know enough to verify her guess; Mottice said there is no evidence linking chronic wasting disease to CJD, and scientists at the National Prion Center believe there's a possibility chronic wasting disease can be transmitted to humans.

Doctors do believe people who eat infected cows can become infected and will eventually develop variant or acquired CJD after an incubation of about 12 years, according to the center. Mottice said she doesn't know of any of these cases that were acquired in the United States; most were picked up in Europe. Infected beef products usually include or were in contact with the spinal column or nervous tissue also, not just muscle, she said.

There's no cure and no way to treat CJD yet because doctors aren't sure what they're dealing with. The disease hasn't been linked to a virus or a bacteria, and the prion has a number of unique characteristics that make it difficult, as the Sorensens found out.

"It's not a live organism, so there's no way they can kill it," Julie Sorensen said.

It also doesn't have any genetic material, according to the National Institutes of Health, and a long incubation period. The harmless and infectious prion are almost identical; both are made of amino acids but the infectious prion is folded in a different way. In some sporadic occurrences, harmless prions simultaneously change into the infectious form and then alter prions in other cells in a chain reaction.

But while she wants to know the answers, Julie Sorensen is trying to put her husband's disease behind her and focus on their 42 years of marriage.

"His kids and grandkids were just his whole life, and everything that he done, he done with them," she said.

Heidi Toth can be reached at 344-2543 or [email protected]

CJD belongs to a family of human and animal diseases known as transmissible spongiform encephalopathies.

Spongiform refers to the characteristic of an affected brain, which becomes filled with holes.

Human types

Kuru -- identified in people of an isolated tribe in Papua New Guinea and has almost entirely disappeared

Fatal Familial Insomnia and Gerstmann-Straussler-Scheinker disease -- very rare hereditary diseases found in a few families throughout the world

Animal types

Bovine spongiform encephalitis -- found in cattle; more commonly known as mad cow

Scrapie -- found in sheep and goats

Feline and mink encephalopathy

Source: National Institutes of Health

This story appeared in The Daily Herald on page A1.
 

Mrs.Greg

Well-known member
Joined
Jan 9, 2006
Messages
7,465
Reaction score
1
Location
Alberta
My sisters mother-in-law died of this 10 years ago,we had seen her in perfectly normal condition on Boxing day and attended her funeral Feb21.It was rapid and very devastating for all involved!The reason for it was really never found out but was not vCJD!!!
 

Mrs.Greg

Well-known member
Joined
Jan 9, 2006
Messages
7,465
Reaction score
1
Location
Alberta
Yes reader you are right it occures more often then people realize and its sooo easy to jump on the vCJD bandwagon.This woman had suffered migraines for years and DR.s feel this may have contributed to the condition!
 

Mrs.Greg

Well-known member
Joined
Jan 9, 2006
Messages
7,465
Reaction score
1
Location
Alberta
I'm really not too sure like I said that was 10 years ago,and that was what they had thought a possibility at the time.After the death a autopsy was preformed to confirm what was the cause.Shortly after they went home to Arizona she started having symptoms of something,the DR's there told her and husband she was stroking!Her daughter had her father bring her to Edmonton in two days they told family it was CJD,and there was no hope,she was in Edmonton 2 weeks before she died!Very fast and very sad!!
 

flounder

Well-known member
Joined
Sep 3, 2005
Messages
2,631
Reaction score
0
Location
TEXAS
> vCJD bandwagon.


HUMAN and ANIMAL TSE Classifications i.e. mad cow
disease and the UKBSEnvCJD only theory

TSEs have been rampant in the USA for decades in many
species, and they all have been rendered and fed back
to animals for human/animal consumption. I propose that
the current diagnostic criteria for human TSEs only
enhances and helps the spreading of human TSE from the
continued belief of the UKBSEnvCJD only theory in 2005.
With all the science to date refuting it, to continue
to validate this myth, will only spread this TSE agent
through a multitude of potential routes and sources
i.e. consumption, surgical, blood, medical, cosmetics
etc. I propose as with Aguzzi, Asante, Collinge,
Caughey, Deslys, Dormont, Gibbs, Ironside, Manuelidis,
Marsh, et al and many more, that the world of TSE
Tranmissible Spongiform Encephalopathy is far from an
exact science, but there is enough proven science to
date that this myth should be put to rest once and for
all, and that we move forward with a new classification
for human and animal TSE that would properly identify
the infected species, the source species, and then the
route. This would further have to be broken down to
strain of species and then the route of transmission
would further have to be broken down. Accumulation and
Transmission are key to the threshold from subclinical
to clinical disease, and of that, I even believe that
physical and or blunt trauma may play a role of onset
of clinical symptoms in some cases, but key to all
this, is to stop the amplification and transmission of
this agent, the spreading of, no matter what strain.
BUT, to continue with this myth that the U.K. strain of
BSE one strain in cows, and the nv/v CJD, one strain in
humans, and that all the rest of human TSE is one
single strain i.e. sporadic CJD (when to date there are
6 different phenotypes of sCJD), and that no other
animal TSE transmits to humans, to continue with this
masquerade will only continue to spread, expose, and
kill, who knows how many more in the years and decades
to come. ONE was enough for me, My Mom, hvCJD, DOD
12/14/97 confirmed, which is nothing more than another
mans name added to CJD, like CJD itself, Jakob and
Creutzfeldt, or Gerstmann-Straussler-Scheinker
syndrome, just another CJD or human TSE, named after
another human. WE are only kidding ourselves with the
current diagnostic criteria for human and animal TSE,
especially differentiating between the nvCJD vs the
sporadic CJD strains and then the GSS strains and also
the FFI fatal familial insomnia strains or the ones
that mimics one or the other of those TSE? Tissue
infectivity and strain typing of the many variants of
the human and animal TSEs are paramount in all variants
of all TSE. There must be a proper classification that
will differentiate between all these human TSE in order
to do this. With the CDI and other more sensitive
testing coming about, I only hope that my proposal will
some day be taken seriously.


My name is Terry S. Singeltary Sr. and I am no
scientist, no doctor and have no PhDs, but have been
independently researching human and animal TSEs since
the death of my Mother to the Heidenhain Variant of
Creutzfeldt Jakob Disease on December 14, 1997
'confirmed'. ...TSS




Terry S. Singeltary Sr.
P.O. Box 42
Bacliff, Texas USA 77518



SOURCES


Full Text
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
Singeltary, Sr et al.
JAMA.2001; 285: 733-734


http://jama.ama-assn.org/cgi/content/full/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=dignosing+and+reporting+creutzfeldt+jakob+disease&searchid=1048865596978_1528&stored_search=&FIRSTINDEX=0&journalcode=jama





Coexistence of multiple PrPSc types in individuals with

Creutzfeldt-Jakob disease


Magdalini Polymenidou, Katharina Stoeck, Markus
Glatzel, Martin Vey, Anne Bellon, and Adriano Aguzzi


Summary


Background The molecular typing of sporadic
Creutzfeldt-Jakob disease (CJD) is based on the size
and glycoform

ratio of protease-resistant prion protein (PrPSc), and
on PRNP haplotype. On digestion with proteinase K, type
1 and

type 2 PrPSc display unglycosylated core fragments of
21 kDa and 19 kDa, resulting from cleavage around amino

acids 82 and 97, respectively.

Methods We generated anti-PrP monoclonal antibodies to
epitopes immediately preceding the differential proteinase

K cleavage sites. These antibodies, which were
designated POM2 and POM12, recognise type 1, but not
type 2, PrPSc.

Findings We studied 114 brain samples from 70 patients
with sporadic CJD and three patients with variant CJD.

Every patient classified as CJD type 2, and all variant
CJD patients, showed POM2/POM12 reactivity in the

cerebellum and other PrPSc-rich brain areas, with a
typical PrPSc type 1 migration pattern.

Interpretation The regular coexistence of multiple
PrPSc types in patients with CJD casts doubts on the
validity of

electrophoretic PrPSc mobilities as surrogates for
prion strains, and questions the rational basis of
current CJD

classifications.


snip...


The above results set the existing CJD classifications

into debate and introduce interesting questions about

human CJD types. For example, do human prion types

exist in a dynamic equilibrium in the brains of affected

individuals? Do they coexist in most or even all CJD

cases? Is the biochemically identified PrPSc type simply

the dominant type, and not the only PrPSc species?


Published online October 31, 2005



http://neurology.thelancet.com



Detection of Type 1 Prion Protein in Variant

Creutzfeldt-Jakob Disease

Helen M. Yull,* Diane L. Ritchie,*

Jan P.M. Langeveld,? Fred G. van Zijderveld,?

Moira E. Bruce,? James W. Ironside,* and

Mark W. Head*

From the National CJD Surveillance Unit,* School of
Molecular

and Clinical Medicine, University of Edinburgh, Edinburgh,

United Kingdom; Central Institute for Animal Disease
Control

(CIDC)-Lelystad, ? Lelystad, The Netherlands; Institute
for Animal

Health, Neuropathogenesis Unit, ? Edinburgh, United Kingdom

Molecular typing of the abnormal form of the prion

protein (PrPSc) has come to be regarded as a powerful

tool in the investigation of the prion diseases. All
evidence

thus far presented indicates a single PrPSc molecular

type in variant Creutzfeldt-Jakob disease (termed

type 2B), presumably resulting from infection with a

single strain of the agent (bovine spongiform
encephalopathy).

Here we show for the first time that the PrPSc

that accumulates in the brain in variant Creutzfeldt-

Jakob disease also contains a minority type 1 component.

This minority type 1 PrPSc was found in all 21

cases of variant Creutzfeldt-Jakob disease tested,
irrespective

of brain region examined, and was also

present in the variant Creutzfeldt-Jakob disease tonsil.

The quantitative balance between PrPSc types was maintained

when variant Creutzfeldt-Jakob disease was

transmitted to wild-type mice and was also found in

bovine spongiform encephalopathy cattle brain, indicating

that the agent rather than the host specifies their

relative representation. These results indicate that PrPSc

molecular typing is based on quantitative rather than

qualitative phenomena and point to a complex relationship

between prion protein biochemistry, disease phenotype

and agent strain. (Am J Pathol 2006, 168:151-157;

DOI: 10.2353/ajpath.2006.050766)



snip...



Discussion

In the apparent absence of a foreign nucleic acid genome

associated with the agents responsible for transmissible

spongiform encephalopathies or prion diseases,

efforts to provide a molecular definition of agent strain

have focused on biochemical differences in the abnormal,

disease-associated form of the prion protein, termed

PrPSc. Differences in PrPSc conformation and glycosylation

have been proposed to underlie disease phenotype

and form the biochemical basis of agent strain. This

proposal has found support in the observation that the

major phenotypic subtypes of sCJD appear to correlate

with the presence of either type 1 or type 2 PrPSc in

combination with the presence of either methionine or

valine at codon 129 of the prion protein gene.2 Similarly,

the PrPSc type associated with vCJD correlates with the

presence of type 2 PrPSc and is distinct from that found in

sCJD because of a characteristically high occupancy of

both N-linked glycosylation sites (type 2B).6,11 The

means by which such conformational difference is detected

is somewhat indirect; relying on the action of proteases,

primarily proteinase K, to degrade the normal

Figure 6. Type 1 PrPSc is a stable minority component
of PrPSc from the vCJD

brain. Western blot analysis of PrP in a sample of
cerebral cortex from a
case

of vCJD during digestion with proteinase K is shown.
Time points assayed

are indicated in minutes (T0, 5, 10, 30, 60, 120, 180).
Duplicate blots were

probed with 3F4, which detects both type 1 and type 2
PrPSc, and with 12B2,

which detects type 1. The insert shows a shorter
exposure of the same time

course study from a separate experiment also probed
with 3F4. Both blots

included samples of cerebral cortex from a case of
sporadic CJD MM1 (Type

1) and molecular weight markers (Markers) indicate
weights in kd.

Figure 7. A minority type 1-like PrPSc is found in vCJD
tonsil, vCJD
transmitted

to mice and in BSE. Western blot analysis of PrPSc in a
concentrated

sample of tonsil from a case of vCJD (Tonsil), in a
concentrated brain
sample

of a wild-type mouse (C57BL) infected with vCJD and in
a sample of cattle

BSE brain (BSE) is shown. Tissue extracts were digested
with proteinase K.

Duplicate blots were probed with either 3F4 or 6H4,
both of which detect

type 1 and type 2 PrPSc, and with 12B2, which detects
type 1. The blots

included samples of cerebral cortex from a case of
sporadic CJD MM1 (Type

1) and molecular weight markers (Markers) indicate
weights in kd.

Type 1 PrPSc in Variant Creutzfeldt-Jakob Disease 155

AJP January 2006, Vol. 168, No. 1

cellular form of PrP and produce a protease-resistant

core fragment of PrPSc that differs in the extent of its

N-terminal truncation according to the original

conformation.

A complication has recently arisen with the finding that

both type 1 and type 2 can co-exist in the brains of

patients with sCJD.2,5-8 More recently this same phenomenon

has been demonstrated in patients with iatrogenically

acquired and familial forms of human prion disease.

9,10 The existence of this phenomenon is now

beyond doubt but its prevalence and its biological
significance

remain a matter of debate.

Conventional Western blot analysis using antibodies

that detect type 1 and type 2 PrPSc has severe quantitative

limitations for the co-detection of type 1 and type 2

PrPSc in individual samples, suggesting that the prevalence

of co-occurrence of the two types might be underestimated.

We have sought to circumvent this problem by

using an antibody that is type 1-specific and applied this

to the sole remaining human prion disease where the

phenomenon of mixed PrPSc types has not yet been

shown, namely vCJD.

These results show that even in vCJD where susceptible

individuals have been infected supposedly by a

single strain of agent, both PrPSc types co-exist: a
situation

reminiscent of that seen when similarly discriminant

antibodies were used to analyze experimental BSE in

sheep.14,17 In sporadic and familial CJD, individual

brains can show a wide range of relative amounts of the

two types in samples from different regions, but where

brains have been thoroughly investigated a predominant

type is usually evident.2,6,10 This differs from this
report

on vCJD, where type 1 is present in all samples
investigated

but always as a minor component that never

reaches a level at which it is detectable without a type

1-specific antibody. It would appear that the relative
balance

between type 1 and type 2 is controlled within

certain limits in the vCJD brain. A minority type-1-like

band is also detected by 12B2 in vCJD tonsil, in BSE

brain and in the brains of mice experimentally infected

with vCJD, suggesting that this balance of types is agent,

rather than host or tissue, specific. Interestingly the
"glycoform

signature" of the type 2 PrPSc found in vCJD (type

2B) is also seen in the type 1 PrPSc components, suggesting

that it could legitimately be termed type 1B.

PrPSc isotype analysis has proven to be extremely

useful in the differential diagnosis of CJD and is
likely to

continue to have a major role in the investigation of human

prion diseases. However, it is clear, on the basis of

these findings, that molecular typing has quantitative
limitations

and that any mechanistic explanation of prion

replication and the molecular basis of agent strain
variation

must accommodate the co-existence of multiple

prion protein conformers. Whether or not the different

conformers we describe here correlate in a simple and

direct way with agent strain remains to be determined. In

principle two interpretations present themselves: either

the two conformers can be produced by a single strain of

agent or vCJD (and, therefore, presumably BSE) results

from a mixture of strains, one of which generally
predominates.

Evidence for the isolation in mice of more than one

strain from individual isolates of BSE has been presented

previously.18,19

One practical consequence of our findings is that the

correct interpretation of transmission studies will depend

on a full examination of the balance of molecular types

present in the inoculum used to transmit disease, in
addition

to a thorough analysis of the molecular types that

arise in the recipients. Another consequence relates to

the diagnostic certainty of relying on PrPSc molecular

type alone when considering the possibility of BSE
infection

or secondary transmission in humans who have a

genotype other than methionine at codon 129 of the

PRNP gene. In this context it is interesting to note
that this

minority type 1B component resembles the type 5 PrPSc

described previously to characterize vCJD transmission

into certain humanized PRNP129VV transgenic mouse

models.12,20 This apparently abrupt change in molecular

phenotype might represent a selection process imposed

by this particular transgenic mouse model. Irrespective of

whether this proves to be the case, the results shown

here point to further complexities in the relationship
between

the physico-chemical properties of the prion protein,

human disease phenotype, and prion agent strain.

Acknowledgments



snip...



Type 1 PrPSc in Variant Creutzfeldt-Jakob Disease 157

AJP January 2006, Vol. 168, No. 1 ...TSS



http://ajp.amjpathol.org/cgi/content/abstract/168/1/151maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=prion&searchid=1136646133963_237&FIRSTINDEX=0&volume=168&issue=1&journalcode=amjpathol



Neuropathology and Applied Neurobiology

(2005),

31

, 565-579 doi: 10.1111/j.1365-2990.2005.00697.x

© 2005 Blackwell Publishing Ltd

565

Blackwell Science, LtdOxford, UKNANNeuropathology and
Applied Neurobiology0305-1846Blackwell Publishing Ltd, 2005

316565579

Review article

Phenotypic variability in human prion diseases

J. W. Ironside, D. L. Ritchie and M. W. Head

National Creutzfeldt-Jakob Disease Surveillance Unit,
Division of Pathology, University of Edinburgh,
Edinburgh, UK

J. W. Ironside, D. L. Ritchie and M. W. Head (2005)

Neuropathology and Applied Neurobiology

31,

565-579

Phenotypic variability in human prion diseases

Human prion diseases are rare neurodegenerative disorders

that can occur as sporadic, familial or acquired disorders.

Within each of these categories there is a wide range

of phenotypic variation that is not encountered in other

neurodegenerative disorders. The identification of the

prion protein and its key role in the pathogenesis of this

diverse group of diseases has allowed a fuller
understanding

of factors that influence disease phenotype. In particular,

the naturally occurring polymorphism at codon 129

in the prion protein gene has a major influence on the
disease

phenotype in sporadic, familial and acquired prion

diseases, although the underlying mechanisms remain

unclear. Recent technical advances have improved our

ability to study the isoforms of the abnormal prion protein

in the brain and in other tissues. This has lead to the
concept

of molecular strain typing, in which different isoforms

of the prion protein are proposed to correspond to

individual strains of the transmissible agent, each with

specific biological properties. In sporadic
Creutzfeldt-Jakob

disease there are at least six major combinations of codon

129 genotype and prion protein isotype, which appear to

relate to distinctive clinical subgroups of this disease.

However, these relationships are proving to be more complex

than first considered, particularly in cases with more

than a single prion protein isotype in the brain. Further

work is required to clarify these relationships and to

explain the mechanism of neuropathological targeting of

specific brain regions, which accounts for the diversity of

clinical features within human prion diseases.



© 2005 Blackwell Publishing Ltd, Neuropathology and
Applied Neurobiology, 31, 565-579


BSE prions propagate as either variant CJD-like or

sporadic CJD-like prion strains in transgenic mice

expressing human prion protein



The EMBO Journal Vol. 21 No. 23 pp. 6358±6366, 2002



Emmanuel A.Asante, Jacqueline M.Linehan,

Melanie Desbruslais, Susan Joiner,

Ian Gowland, Andrew L.Wood, Julie Welch,

Andrew F.Hill, Sarah E.Lloyd,

Jonathan D.F.Wadsworth and

John Collinge1

MRC Prion Unit and Department of Neurodegenerative Disease,

Institute of Neurology, University College, Queen Square,

London WC1N 3BG, UK

1Corresponding author

e-mail: [email protected]



Variant Creutzfeldt±Jakob disease (vCJD) has been

recognized to date only in individuals homozygous for

methionine at PRNP codon 129. Here we show that

transgenic mice expressing human PrP methionine

129, inoculated with either bovine spongiform

encephalopathy (BSE) or variant CJD prions, may

develop the neuropathological and molecular phenotype

of vCJD, consistent with these diseases being

caused by the same prion strain. Surprisingly, however,

BSE transmission to these transgenic mice, in

addition to producing a vCJD-like phenotype, can also

result in a distinct molecular phenotype that is
indistinguishable

from that of sporadic CJD with PrPSc

type 2. These data suggest that more than one BSEderived

prion strain might infect humans; it is therefore

possible that some patients with a phenotype consistent

with sporadic CJD may have a disease arising

from BSE exposure.



snip...



These studies further strengthen the evidence that vCJD

is caused by a BSE-like prion strain. Also, remarkably, the

key neuropathological hallmark of vCJD, the presence of

abundant ¯orid PrP plaques, can be recapitulated on BSE

or vCJD transmission to these mice. However, the most

surprising aspect of the studies was the ®nding that an

alternate pattern of disease can be induced in 129MM

Tg35 mice from primary transmission of BSE, with a

molecular phenotype indistinguishable from that of a
subtype

of sporadic CJD. This ®nding has important potential

implications as it raises the possibility that some humans

infected with BSE prions may develop a clinical disease

indistinguishable from classical CJD associated with type 2

PrPSc. This is, in our experience, the commonest molecular

sub-type of sporadic CJD. In this regard, it is of interest

that the reported incidence of sporadic CJD has risen
in the

UK since the 1970s (Cousens et al., 1997). This has been

attributed to improved case ascertainment, particularly as

much of the rise is reported from elderly patients and

similar rises in incidence were noted in other European

countries without reported BSE (Will et al., 1998).

However, it is now clear that BSE is present in many

European countries, albeit at a much lower incidence than

was seen in the UK. While improved ascertainment is

likely to be a major factor in this rise, that some of
these

additional cases may be related to BSE exposure cannot be

ruled out. It is of interest in this regard that a 2-fold

increase in the reported incidence of sporadic CJD in 2001

has recently been reported for Switzerland, a country that

had the highest incidence of cattle BSE in continental

Europe between 1990 and 2002 (Glatzel et al., 2002). No

epidemiological case±control studies with strati®cation of

CJD cases by molecular sub-type have yet been reported.

It will be important to review the incidence of sporadic

CJD associated with PrPSc type 2 and other molecular
subtypes

in both BSE-affected and unaffected countries in the



light of these ®ndings. If human BSE prion infection can

result in propagation of type 2 PrPSc, it would be expected

that such cases would be indistinguishable on clinical,

pathological and molecular criteria from classical CJD. It

may also be expected that such prions would behave

biologically like those isolated from humans with sporadic

CJD with type 2 PrPSc. The transmission properties of

prions associated with type 2 PrPSc from BSE-inoculated

129MM Tg35 mice are being investigated by serial

passage.

We consider these data inconsistent with contamination

of some of the 129MM Tg35 mice with sporadic CJD

prions. These transmission studies were performed according

to rigorous biosafety protocols for preparation of

inocula and both the inoculation and care of mice, which

are all uniquely identi®ed by sub-cutaneous transponders.

However, crucially, the same BSE inocula have been used

on 129VV Tg152 and 129MM Tg45 mice, which are

highly sensitive to sporadic CJD but in which such

transmissions producing type 2 PrPSc were not observed.

Furthermore, in an independent experiment, separate

inbred lines of wild-type mice, which are highly resistant

to sporadic CJD prions, also propagated two distinctive

PrPSc types on challenge with either BSE or vCJD. No

evidence of spontaneous prion disease or PrPSc has been

seen in groups of uninoculated or mock-inoculated aged

129MM Tg35 mice.

While distinctive prion isolates have been derived from

BSE passage in mice previously (designated 301C and

301V), these, in contrast to the data presented here, are

propagated in mice expressing different prion proteins

(Bruce et al., 1994). It is unclear whether our ®ndings

indicate the existence of more than one prion strain in

individual cattle with BSE, with selection and preferential

replication of distinct strains by different hosts, or that

`mutation' of a unitary BSE strain occurs in some types of

host. Western blot analysis of single BSE isolates has not

shown evidence of the presence of a proportion of

monoglycosylated dominant PrPSc type in addition to the

diglycosylated dominant pattern (data not shown).

Extensive strain typing of large numbers of individual

BSE-infected cattle either by biological or molecular

methods has not been reported.

Presumably, the different genetic background of the

different inbred mouse lines is crucial in determining

which prion strain propagates on BSE inoculation. The

transgenic mice described here have a mixed genetic

background with contributions from FVB/N, C57BL/6 and

129Sv inbred lines; each mouse will therefore have a

different genetic background. This may explain the

differing response of individual 129MM Tg35 mice, and

the difference between 129MM Tg35 and 129MM Tg45

mice, which are, like all transgenic lines, populations

derived from single founders. Indeed, the consistent

distinctive strain propagation in FVB and C57BL/6 versus

SJL and RIIIS lines may allow mapping of genes relevant

to strain selection and propagation, and these studies
are in

progress.

That different prion strains can be consistently isolated

in different inbred mouse lines challenged with BSE

prions argues that other species exposed to BSE may

develop prion diseases that are not recognizable as being

caused by the BSE strain by either biological or molecular

strain typing methods. As with 129MM Tg35 mice, the

prions replicating in such transmissions may be
indistinguishable

from naturally occurring prion strains. It

remains of considerable concern whether BSE has transmitted

to, and is being maintained in, European sheep

¯ocks. Given the diversity of sheep breeds affected by

scrapie, it has to be considered that some sheep might have

become infected with BSE, but propagated a distinctive

strain type indistinguishable from those of natural sheep

scrapie. ...



The EMBO Journal Vol. 21 No. 23 pp. 6358±6366, 2002

6358 ãEuropean Molecular Biology Organization





http://embojournal.npgjournals.com/cgi/reprint/21/23/6358



J Neuropsychiatry Clin Neurosci 17:489-495, November 2005
doi: 10.1176/appi.neuropsych.17.4.489
© 2005 American Psychiatric Publishing, Inc.


Psychiatric Manifestations of Creutzfeldt-Jakob
Disease: A 25-Year Analysis
Christopher A. Wall, M.D., Teresa A. Rummans, M.D.,
Allen J. Aksamit, M.D.,
Lois E. Krahn, M.D. and V. Shane Pankratz, Ph.D.
Received April 20, 2004; revised September 9, 2004;
accepted September 13,
2004. From the Mayo Clinic, Department of Psychiatry
and Psychology,
Rochester, Minnesota; Mayo Clinic, Department of
Neurology, Rochester,
Minnesota. Address correspondence to Dr. Wall, Mayo
Clinic, Department of
Psychiatry and Psychology, Mayo Building-W11A, 200
First St., SW, Rochester,
MN 55905; [email protected] (E-mail).

This study characterizes the type and timing of
psychiatric manifestations
in sporadic Creutzfeldt-Jakob disease (sCJD).
Historically, sCJD has been
characterized by prominent neurological symptoms, while
the variant form
(vCJD) is described as primarily psychiatric in
presentation and course: A
retrospective review of 126 sCJD patients evaluated at
the Mayo Clinic from
1976-2001 was conducted. Cases were reviewed for
symptoms of depression,
anxiety, psychosis, behavior dyscontrol, sleep
disturbances, and
neurological signs during the disease course. Eighty
percent of the cases
demonstrated psychiatric symptoms within the first 100
days of illness, with
26% occurring at presentation. The most commonly
reported symptoms in this
population included sleep disturbances, psychotic
symptoms, and depression.
Psychiatric manifestations are an early and prominent
feature of sporadic
CJD, often occurring prior to formal diagnosis.


snip...



CONCLUSIONS

Historically, psychiatric manifestations have been
described as a relatively
infrequent occurrence in the sporadic form of
creutzfeldt-Jakob disease.
However, our findings suggest otherwise. In this study,
a vast majority of
the cases were noted to have at least one psychiatric
symptom during the
course of illness, with nearly one-quarter occurring in
the prodromal or
presenting phase of the illness. After comparing the
frequency of
neuropsychiatric symptoms in sporadic CJD to studies
describing the variant
form of CJD, we found that there are fewer clinical
differences than
previously reported.5-7 While the age of patients
with vCJD presentation
is significantly younger and the course of illness is
longer, the type and
timing of psychiatric manifestations appear similar
between these two
diseases. ...snip...



http://neuro.psychiatryonline.org/cgi/content/abstract/17/4/489





Personal Communication



-------- Original Message --------



Subject: re-BSE prions propagate as

either variant CJD-like or sporadic CJD Date: Thu, 28
Nov 2002 10:23:43

-0000 From: "Asante, Emmanuel A" To:
"'[email protected]'"

Dear Terry,

I have been asked by Professor Collinge to respond to
your request. I am

a Senior Scientist in the MRC Prion Unit and the lead
author on the

paper. I have attached a pdf copy of the paper for your
attention. Thank

you for your interest in the paper.

In respect of your first question, the simple answer
is, yes. As you

will find in the paper, we have managed to associate
the alternate

phenotype to type 2 PrPSc, the commonest sporadic CJD.

It is too early to be able to claim any further
sub-classification in

respect of Heidenhain variant CJD or Vicky Rimmer's
version. It will

take further studies, which are on-going, to establish
if there are

sub-types to our initial finding which we are now
reporting. The main

point of the paper is that, as well as leading to the
expected new

variant CJD phenotype, BSE transmission to the
129-methionine genotype

can lead to an alternate phenotype which is
indistinguishable from type

2 PrPSc.



I hope reading the paper will enlighten you more on the
subject. If I

can be of any further assistance please to not hesitate
to ask. Best wishes.



Emmanuel Asante

<> ____________________________________

Dr. Emmanuel A Asante MRC Prion Unit & Neurogenetics
Dept. Imperial

College School of Medicine (St. Mary's) Norfolk Place,
LONDON W2 1PG

Tel: +44 (0)20 7594 3794 Fax: +44 (0)20 7706 3272 email:

[email protected] (until 9/12/02)

New e-mail: [email protected] (active from now)

____________________________________


Human Prion Protein with

Valine 129 Prevents Expression

of Variant CJD Phenotype



Jonathan D. F. Wadsworth, Emmanuel A. Asante,

Melanie Desbruslais, Jacqueline M. Linehan, Susan Joiner,

Ian Gowland, Julie Welch, Lisa Stone, Sarah E. Lloyd,

Andrew F. Hill,* Sebastian Brandner, John Collinge.

Variant Creutzfeldt-Jakob disease (vCJD) is a unique
and highly distinctive

clinicopathological and molecular phenotype of human
prion disease

associated with infection with bovine spongiform
encephalopathy (BSE)-like

prions. Here, we found that generation of this
phenotype in transgenic mice

required expression of human prion protein (PrP) with
methionine 129.

Expression of human PrP with valine 129 resulted in a
distinct phenotype and,

remarkably, persistence of a barrier to transmission of
BSE-derived prions on

subpassage. Polymorphic residue 129 of human PrP
dictated propagation of

distinct prion strains after BSE prion infection. Thus,
primary and secondary

human infection with BSE-derived prions may result in
sporadic CJD-like or

novel phenotypes in addition to vCJD, depending on the
genotype of the prion

source and the recipient.



snip...



3 DECEMBER 2004 VOL 306 SCIENCE



http://www.sciencemag.org


Characterization of two distinct prion strains

derived from bovine spongiform encephalopathy

transmissions to inbred mice



Sarah E. Lloyd, Jacqueline M. Linehan, Melanie Desbruslais,

Susan Joiner, Jennifer Buckell, Sebastian Brandner,

Jonathan D. F. Wadsworth and John Collinge

Correspondence

John Collinge

[email protected]

MRC Prion Unit and Department of Neurodegenerative
Disease, Institute of Neurology,

University College, London WC1N 3BG, UK

Received 9 December 2003

Accepted 27 April 2004

Distinct prion strains can be distinguished by
differences in incubation period, neuropathology

and biochemical properties of disease-associated prion
protein (PrPSc) in inoculated mice.

Reliable comparisons of mouse prion strain properties
can only be achieved after passage in

genetically identical mice, as host prion protein
sequence and genetic background are known

to modulate prion disease phenotypes. While multiple
prion strains have been identified in

sheep scrapie and Creutzfeldt-Jakob disease, bovine
spongiform encephalopathy (BSE) is

thought to be caused by a single prion strain. Primary
passage of BSE prions to different lines

of inbred mice resulted in the propagation of two
distinct PrPSc types, suggesting that two

prion strains may have been isolated. To investigate
this further, these isolates were

subpassaged in a single line of inbred mice (SJL) and
it was confirmed that two distinct prion

strains had been identified. MRC1 was characterized by
a short incubation time (110±3 days),

a mono-glycosylated-dominant PrPSc type and a
generalized diffuse pattern of PrP-immunoreactive

deposits, while MRC2 displayed a much longer incubation
time (155±1 days),

a di-glycosylated-dominant PrPSc type and a distinct
pattern of PrP-immunoreactive deposits

and neuronal loss. These data indicate a crucial
involvement of the host genome in modulating

prion strain selection and propagation in mice. It is
possible that multiple disease phenotypes

may also be possible in BSE prion infection in humans
and other animals.



snip...



Journal of General Virology (2004), 85, 2471-2478 DOI
10.1099/vir.0.79889-0



http://vir.sgmjournals.org/cgi/content/abstract/85/8/2471




Medical Sciences
Identification of a second bovine amyloidotic
spongiform encephalopathy: Molecular similarities with
sporadic Creutzfeldt-Jakob disease

Cristina Casalone *, Gianluigi Zanusso , Pierluigi
Acutis *, Sergio Ferrari , Lorenzo Capucci , Fabrizio
Tagliavini ¶, Salvatore Monaco ||, and Maria Caramelli *

*Centro di Referenza Nazionale per le Encefalopatie
Animali, Istituto Zooprofilattico Sperimentale del
Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148,
10195 Turin, Italy; Department of Neurological and
Visual Science, Section of Clinical Neurology,
Policlinico G.B. Rossi, Piazzale L.A. Scuro, 10, 37134
Verona, Italy; Istituto Zooprofilattico Sperimentale
della Lombardia ed Emilia Romagna, Via Bianchi, 9,
25124 Brescia, Italy; and ¶Istituto Nazionale
Neurologico "Carlo Besta," Via Celoria 11, 20133 Milan,
Italy



Edited by Stanley B. Prusiner, University of
California, San Francisco, CA, and approved December
23, 2003 (received for review September 9, 2003)

Transmissible spongiform encephalopathies (TSEs), or
prion diseases, are mammalian neurodegenerative
disorders characterized by a posttranslational
conversion and brain accumulation of an insoluble,
protease-resistant isoform (PrPSc) of the host-encoded
cellular prion protein (PrPC). Human and animal TSE
agents exist as different phenotypes that can be
biochemically differentiated on the basis of the
molecular mass of the protease-resistant PrPSc
fragments and the degree of glycosylation.
Epidemiological, molecular, and transmission studies
strongly suggest that the single strain of agent
responsible for bovine spongiform encephalopathy (BSE)
has infected humans, causing variant Creutzfeldt-Jakob
disease. The unprecedented biological properties of the
BSE agent, which circumvents the so-called "species
barrier" between cattle and humans and adapts to
different mammalian species, has raised considerable
concern for human health. To date, it is unknown
whether more than one strain might be responsible for
cattle TSE or whether the BSE agent undergoes
phenotypic variation after natural transmission. Here
we provide evidence of a second cattle TSE. The
disorder was pathologically characterized by the
presence of PrP-immunopositive amyloid plaques, as
opposed to the lack of amyloid deposition in typical
BSE cases, and by a different pattern of regional
distribution and topology of brain PrPSc accumulation.
In addition, Western blot analysis showed a PrPSc type
with predominance of the low molecular mass glycoform
and a protease-resistant fragment of lower molecular
mass than BSE-PrPSc. Strikingly, the molecular
signature of this previously undescribed bovine PrPSc
was similar to that encountered in a distinct subtype
of sporadic Creutzfeldt-Jakob disease.




--------------------------------------------------------------------------------

C.C. and G.Z. contributed equally to this work.

||To whom correspondence should be addressed.

E-mail: salvatore.m[email protected] .

www.pnas.org/cgi/doi/10.1073/pnas.0305777101



snip...



Phenotypic Similarities Between BASE and sCJD. The
transmissibility

of CJD brains was initially demonstrated in primates
(27), and

classification of atypical cases as CJD was based on
this property

(28). To date, no systematic studies of strain typing
in sCJD have

been provided, and classification of different subtypes
is based

on clinical, neuropathological, and molecular features
(the polymorphic

PRNP codon 129 and the PrPSc glycotype) (8, 9, 15, 19).

The importance of molecular PrPSc characterization in
assessing

the identity of TSE strains is underscored by several
studies,

showing that the stability of given disease-specific
PrPSc types is

maintained upon experimental propagation of sCJD, familial

CJD, and vCJD isolates in transgenic PrP-humanized mice (8,

29). Similarly, biochemical properties of BSE- and
vCJDassociated

PrPSc molecules remain stable after passage to mice

expressing bovine PrP (30). Recently, however, it has been

reported that PrP-humanized mice inoculated with BSE
tissues

may also propagate a distinctive PrPSc type, with a
''monoglycosylated-

dominant'' pattern and electrophoretic mobility of the

unglycosylated fragment slower than that of vCJD and
BSE (31).

Strikingly, this PrPSc type shares its molecular
properties with the

a PrPSc molecule found in classical sCJD. This
observation is at

variance with the PrPSc type found in MV2 sCJD cases and in

cattle BASE, showing a monoglycosylated-dominant
pattern but

faster electrophoretic mobility of the
protease-resistant fragment

as compared with BSE. In addition to molecular properties

of PrPSc, BASE and MV2 sCJD share a distinctive pattern of

intracerebral PrP deposition, which occurs as
plaque-like and

amyloid-kuru plaques. Differences were, however,
observed in

the regional distribution of PrPSc. While inMV2 sCJD
cases the

largest amounts of PrPSc were detected in the cerebellum,

brainstem, and striatum, in cattle BASE these areas
were less

involved and the highest levels of PrPSc were recovered
from the

thalamus and olfactory regions.

In conclusion, decoding the biochemical PrPSc signature of

individual human and animal TSE strains may allow the
identification

of potential risk factors for human disorders with

unknown etiology, such as sCJD. However, although BASE and

sCJD share several characteristics, caution is dictated
in assessing

a link between conditions affecting two different mammalian

species, based on convergent biochemical properties of
diseaseassociated

PrPSc types. Strains of TSE agents may be better

characterized upon passage to transgenic mice. In the
interim

until this is accomplished, our present findings
suggest a strict

epidemiological surveillance of cattle TSE and sCJD
based on

molecular criteria.



http://www.pnas.org/cgi/reprint/0305777101v1



TSS
 

rkaiser

Well-known member
Joined
Feb 14, 2005
Messages
1,958
Reaction score
0
Location
Calgary Alberta
Or Terry could start asking questions about metals which many scientists with less access to money are finding association to all TSE's.
 

flounder

Well-known member
Joined
Sep 3, 2005
Messages
2,631
Reaction score
0
Location
TEXAS
hey there rkaiser, nice try;-) you OPiest's have no science to back your claims of OPs causing any TSE. nice try, trying to change the thread too.
the faulty diagnostic criteria that has been a mirage since it's inception has nothing to do with your faulty myth that OPs cause CJD/BSE and all TSEs. believe me, it would be much easier if they were. facts show different for direct route and source of TSE. amplification and transmission. i really don't think most of you OPiest's even believe in that failed theory. i really think you just don't want to admit the obvious, i.e. decades of tainted feed, amplification and transmission, which have been proven scientifically. believe me, i know OPs, metals and such are killers as well, both my grandfathers died from industrial cancer related deaths,
both worked in Texas City, Texsa, and my father-in-law has asbestiosas and breaths on oxygen, and i live between two of the most chemical laden counties in the country, TEXAS City, Texas to the south, bayport and the houston ports and chemical complex to the north, and the houston/galveston ship channel in my backyard, that yellow sheen over the ship channel is NOT coming from cars, believe me. like i said, it would be much easier to blame ops. problem is, they are not the cause of TSEs.
OPs another good mirage though. just aint the cause of TSE. i applaud you folks on the ops and metals bandwagon, they are killers, but they simply are not the cause of any human or animal TSE, and have never to date been proven to be so. again though, nice try rkaiser, i figure on kathy to chime in any minute :)...................tss
 

Latest posts

Top