Greetings,
A kind greetings from Texas!
mark purdey wrote;
Come on R2. why don't you read what I have just said - THAT THE TSE AGENT IS A TRANSMISSIBLE AGENT. you go on and on as though I am trying to deny this well established fact. what is your game ?
If you wish to delude yourself that meat and bone meal and / or beef were the vectors that transmitted the TSE agent then you remain in total denial of the true epidemiological facts .
How do you explain why no BSE broke out in the middle eastern dairy herds despite recieving boatloads of UK meat and bone meal as feed throughout the BSE era ?
TSS WRITES;
comparing apples to oranges, these middle eastern dairy herds recieved far less MBM i.e. flours and meals, and or greaves, than those of documented BSE countries. ...
http://www.bseinquiry.gov.uk/files/mb/m12/tab12.pdf
mark purdey wrote;
How do you explain the emergence of 43, 000 cases of BSE in UK cattle that were born after the 1988 ban of meat and bone going into ruminant feeds in the UK?
TSS WRITES;
very easily, non-compliance to feed ban and cross contaminations. pre-clincal
animals still going into the feed chain, even to this date. the partial compliance of the
feed ban is the cause of the sharp decline of BSE over the years.
http://www.bseinquiry.gov.uk/files/yb/1995/01/05003001.pdf
of course the ruminant feed ban was working against the grain anyway, so
compliance was going to be a joke;
STRICTLY PRIVATE AND CONFIDENTIAL 25, AUGUST 1995
snip...
To minimise the risk of farmers' claims for compensation from feed
compounders.
To minimise the potential damage to compound feed markets through adverse publicity.
To maximise freedom of action for feed compounders, notably by
maintaining the availability of meat and bone meal as a raw
material in animal feeds, and ensuring time is available to make any
changes which may be required.
snip...
THE FUTURE
4..........
MAFF remains under pressure in Brussels and is not skilled at
handling potentially explosive issues.
5. Tests _may_ show that ruminant feeds have been sold which
contain illegal traces of ruminant protein. More likely, a few positive
test results will turn up but proof that a particular feed mill knowingly
supplied it to a particular farm will be difficult if not impossible.
6. The threat remains real and it will be some years before feed
compounders are free of it. The longer we can avoid any direct
linkage between feed milling _practices_ and actual BSE cases,
the more likely it is that serious damage can be avoided. ...
SEE full text ;
http://www.bseinquiry.gov.uk/files/yb/1995/08/24002001.pdf
http://www.bseinquiry.gov.uk/files/yb/1995/01/11001001.pdf
MR PURDEY'S LETTER IN FARMERS WEEKLY 1996
http://www.bseinquiry.gov.uk/files/yb/1996/03/12006001.pdf
CURRENT STATUS OF SE TRANSMISSIBILITY/BIOASSAY STUDIES
27 FEBRUARY 1996
http://www.bseinquiry.gov.uk/files/yb/1996/02/27001001.pdf
http://www.bseinquiry.gov.uk/files/yb/1996/02/29001001.pdf
PROGRESS REPORT-BSE CATTLE TRANSMISSIONS
http://www.bseinquiry.gov.uk/files/yb/1995/01/03003001.pdf
Risk of oral infection with bovine spongiform encephalopathy agent in primates
Corinne Ida Lasmézas, Emmanuel Comoy, Stephen Hawkins, Christian Herzog, Franck Mouthon, Timm Konold, Frédéric Auvré, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Nicole Salès, Gerald Wells, Paul Brown, Jean-Philippe Deslys
Summary The uncertain extent of human exposure to bovine spongiform encephalopathy (BSE)--which can lead to variant Creutzfeldt-Jakob disease (vCJD)--is compounded by incomplete knowledge about the efficiency of oral infection and the magnitude of any bovine-to-human biological barrier to transmission. We therefore investigated oral transmission of BSE to non-human primates. We gave two macaques a 5 g oral dose of brain homogenate from a BSE-infected cow. One macaque developed vCJD-like neurological disease 60 months after exposure, whereas the other remained free of disease at 76 months. On the basis of these findings and data from other studies, we made a preliminary estimate of the food exposure risk for man, which provides additional assurance that existing public health measures can prevent transmission of BSE to man.
Published online January 27, 2005
http://www.thelancet.com/journal/journal.isa
It is clear that the designing scientists must
also have shared Mr Bradley's surprise at the results because all the dose
levels right down to 1 gram triggered infection.
http://www.bseinquiry.gov.uk/files/ws/s145d.pdf
2
6. It also appears to me that Mr Bradley's answer (that it would take less than say 100
grams) was probably given with the benefit of hindsight; particularly if one
considers that later in the same answer Mr Bradley expresses his surprise that it
could take as little of 1 gram of brain to cause BSE by the oral route within the
same species. This information did not become available until the "attack rate"
experiment had been completed in 1995/96. This was a titration experiment
designed to ascertain the infective dose. A range of dosages was used to ensure
that the actual result was within both a lower and an upper limit within the study
and the designing scientists would not have expected all the dose levels to trigger
infection. The dose ranges chosen by the most informed scientists at that time
ranged from 1 gram to three times one hundred grams. It is clear that the designing
scientists must have also shared Mr Bradley's surprise at the results because all the
dose levels right down to 1 gram triggered infection.
http://www.bseinquiry.gov.uk/files/ws/s147f.pdf
Re: BSE .1 GRAM LETHAL NEW STUDY SAYS via W.H.O. Dr Maura Ricketts
[BBC radio 4 FARM news]
http://www.maddeer.org/audio/BBC4farmingtoday2_1_03.ram
http://www.fda.gov/ohrms/dockets/ac/03/slides/3923s1_OPH.htm
2) Infectious dose:
To cattle: 1 gram of infected brain material (by oral ingestion)
http://www.inspection.gc.ca/english/sci/bio/bseesbe.shtml
HERE is a doozy, the oral dose of BSE in primates--look at the table and you'll see that as little as 1 mg (or 0.001 gm) caused 7% (1 of 14) of the cows to come down with BSE. NOW that is a small dose for sure;
Published online
January 27, 2005
http://image.thelancet.com/
extras/05let1056web.pdf
Commissariat à l'Energie
Atomique/Direction des
Sciences du Vivant/Départment
de Recherche Médicale,
18 Route du Panorama, 92265
Fontenay-aux-Roses, France
(C I Lasmézas DrMedVet,
E Comoy DrMedVet,
Risk of oral infection with bovine spongiform
encephalopathy agent in primates
Corinne Ida Lasmézas, Emmanuel Comoy, Stephen Hawkins, Christian Herzog, Franck Mouthon, Timm Konold, Frédéric Auvré, Evelyne Correia,
Nathalie Lescoutra-Etchegaray, Nicole Salès, Gerald Wells, Paul Brown, Jean-Philippe Deslys
The uncertain extent of human exposure to bovine spongiform encephalopathy (BSE)—which can lead to variant
Creutzfeldt-Jakob disease (vCJD)—is compounded by incomplete knowledge about the efficiency of oral infection
and the magnitude of any bovine-to-human biological barrier to transmission. We therefore investigated oral
transmission of BSE to non-human primates. We gave two macaques a 5 g oral dose of brain homogenate from a
BSE-infected cow. One macaque developed vCJD-like neurological disease 60 months after exposure, whereas the
other remained free of disease at 76 months. On the basis of these findings and data from other studies, we made a
preliminary estimate of the food exposure risk for man, which provides additional assurance that existing public
health measures can prevent transmission of BSE to man....
snip...end...tss
NEW MAD COW STRAIN CALLED BASE, VERY SIMILAR TO SPORADIC CJD IN HUMANS;
Medical Sciences
Identification of a second bovine amyloidotic spongiform encephalopathy: Molecular similarities with sporadic Creutzfeldt-Jakob disease
Cristina Casalone *, Gianluigi Zanusso , Pierluigi Acutis *, Sergio Ferrari , Lorenzo Capucci , Fabrizio Tagliavini ¶, Salvatore Monaco ||, and Maria Caramelli *
*Centro di Referenza Nazionale per le Encefalopatie Animali, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, 10195 Turin, Italy; Department of Neurological and Visual Science, Section of Clinical Neurology, Policlinico G.B. Rossi, Piazzale L.A. Scuro, 10, 37134 Verona, Italy; Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Via Bianchi, 9, 25124 Brescia, Italy; and ¶Istituto Nazionale Neurologico "Carlo Besta," Via Celoria 11, 20133 Milan, Italy
Edited by Stanley B. Prusiner, University of California, San Francisco, CA, and approved December 23, 2003 (received for review September 9, 2003)
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are mammalian neurodegenerative disorders characterized by a posttranslational conversion and brain accumulation of an insoluble, protease-resistant isoform (PrPSc) of the host-encoded cellular prion protein (PrPC). Human and animal TSE agents exist as different phenotypes that can be biochemically differentiated on the basis of the molecular mass of the protease-resistant PrPSc fragments and the degree of glycosylation. Epidemiological, molecular, and transmission studies strongly suggest that the single strain of agent responsible for bovine spongiform encephalopathy (BSE) has infected humans, causing variant Creutzfeldt-Jakob disease. The unprecedented biological properties of the BSE agent, which circumvents the so-called "species barrier" between cattle and humans and adapts to different mammalian species, has raised considerable concern for human health. To date, it is unknown whether more than one strain might be responsible for cattle TSE or whether the BSE agent undergoes phenotypic variation after natural transmission. Here we provide evidence of a second cattle TSE. The disorder was pathologically characterized by the presence of PrP-immunopositive amyloid plaques, as opposed to the lack of amyloid deposition in typical BSE cases, and by a different pattern of regional distribution and topology of brain PrPSc accumulation. In addition, Western blot analysis showed a PrPSc type with predominance of the low molecular mass glycoform and a protease-resistant fragment of lower molecular mass than BSE-PrPSc. Strikingly, the molecular signature of this previously undescribed bovine PrPSc was similar to that encountered in a distinct subtype of sporadic Creutzfeldt-Jakob disease.
--------------------------------------------------------------------------------
C.C. and G.Z. contributed equally to this work.
||To whom correspondence should be addressed.
E-mail: salvatore.monaco@mail.univr.it. .
www.pnas.org/cgi/doi/10.1073/pnas.0305777101
http://www.pnas.org/cgi/content/abstract/0305777101v1
>> Differences in tissue distribution could require new regulations
>> regarding specific risk material (SRM) removal.
>
>
>
>
snip...end
full text ;
http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
look at the table and you'll see that as little as 1 mg (or 0.001 gm) caused 7% (1 of 14) of the cows to come down with BSE.
For personal use. Only reproduce with permission from Elsevier Ltd
Up to 400 000 cows with undiagnosed bovine spongiform
encephalopathy (BSE) infection are estimated to
have been slaughtered for food before brain and spinal
cord were banned from human consumption in 1989.
More restricted exposure to BSE could have continued
through 1995 from consumption of processed meat
products containing mechanically recovered meat
contaminated with central nervous system (CNS) tissue
and spinal ganglia.1 The discovery of BSE in Canada and
the USA, where consumption of brain and other viscera
was allowed until 2003, and of secondary cases of variant
Creutzfeldt-Jakob disease (vCJD) in the UK, possibly
attributable to contaminated blood donated by people
with pre-clinical primary infection, reinforces the need
for an experimental assessment of the risk of oral
exposure to BSE. We therefore investigated oral
transmission of BSE to non-human primates.
We chose cynomolgus macaques for the study because
these old-world monkeys have a digestive physiology
similar to that of human beings, are methionine
homozygous at codon 129 of the PRNP gene, and have a
BSE neuropathology similar to that of vCJD.2,3 We gave
two 4-year-old adult macaques a 5 g oral dose of brain
homogenate from a BSE-affected cow. We tested for
proteinase-resistant prion protein (PrPres) in this
homogenate with a commercial BSE-testing ELISA kit
(Bio-Rad, Marnes-la-Coquette, France). A sample of the
100% homogenate brain paste inoculum that was fed to
the primates was rehomogenised at 20% weight-pervolume
in the kit buffer. Serial dilutions were made with
a pool of 20% weight-per-volume BSE-negative brain
homogenate in the same buffer. Testing was done
according to the manufacturer's instructions and results
were con.rmed by a western blot test (Bio-Rad) with a
similar process of PrPres dilution. With both methods,
dilutions of up to 1 in 300 provided a positive signal
(.gure A).
One macaque developed neurological disease
60 months after exposure and was killed at 63 months
because of recumbency. Histopathological examination
of the brain of this animal showed the typical pathology
of vCJD (.gure B) and an accumulation of PrPres
associated with the follicular dendritic cells in tonsils
(.gure C), spleen, and intestine. A western blot showed
similar patterns of PrPres in a brain sample from the
macaque and the BSE-infected bovine inoculum
(.gure D). The other macaque remained free of clinical
signs 76 months after exposure, and a tonsil biopsy done
at 72 months was negative (.gure E).
In a previous study, two macaques orally dosed with
5 g of brain from a macaque with terminal clinical BSE
became ill after 44 and 47 months.4 The results of the
present study suggest that the incubation period for
interspecies transmission of BSE can be considerably
Published online
January 27, 2005
http://image.thelancet.com/
extras/05let1056web.pdf
Commissariat à l'Energie
Atomique/Direction des
Sciences du Vivant/Départment
de Recherche Médicale,
18 Route du Panorama, 92265
Fontenay-aux-Roses, France
(C I Lasmézas DrMedVet,
E Comoy DrMedVet,
C Herzog DipBiol,
F Mouthon DipBiol, F Auvré,
E Correia,
N Lescoutra-Etchegaray DipBiol,
Prof N Salès PhD, J-P Deslys MD);
Veterinary Laboratories
Agency, New Haw, Addlestone,
UK (S Hawkins MIBiol,
T Konold DrMedVet,
G Wells BVetMed); and 7815
Exeter Road, Bethesda, MD
20814, USA (P Brown PhD)
Correspondence to:
Dr Jean-Philippe Deslys
e-mail: jpdeslys@cea.fr
www.thelancet.com Published online January 27, 2005 http://image.thelancet.com/extras/05let1056web.pdf 1
Risk of oral infection with bovine spongiform
encephalopathy agent in primates
Corinne Ida Lasmézas, Emmanuel Comoy, Stephen Hawkins, Christian Herzog, Franck Mouthon, Timm Konold, Frédéric Auvré, Evelyne Correia,
Nathalie Lescoutra-Etchegaray, Nicole Salès, Gerald Wells, Paul Brown, Jean-Philippe Deslys
The uncertain extent of human exposure to bovine spongiform encephalopathy (BSE)—which can lead to variant
Creutzfeldt-Jakob disease (vCJD)—is compounded by incomplete knowledge about the ef.ciency of oral infection
and the magnitude of any bovine-to-human biological barrier to transmission. We therefore investigated oral
transmission of BSE to non-human primates. We gave two macaques a 5 g oral dose of brain homogenate from a
BSE-infected cow. One macaque developed vCJD-like neurological disease 60 months after exposure, whereas the
other remained free of disease at 76 months. On the basis of these .ndings and data from other studies, we made a
preliminary estimate of the food exposure risk for man, which provides additional assurance that existing public
health measures can prevent transmission of BSE to man.
B
C
E
A
Dilution
D
3·215
1·989
0·984
0·302
0·131
0·065
0·052
1/10
1/30
1/100
1/300
1/1000
1/3000
Neg
36 kDa
36 kDa
22 kDa
22 kDa
16 kDa
1 2 3 4
ELISA detection of PrPres (absorbance units)
Figure: PrPres content of brain homogenate and histopathological assessment of macaque tissues
(A) Results of in-vitro testing for PrPres in BSE-infected inoculum by ELISA and western blot. Neg=normal bovine
brain material. (B) Typical .orid plaque in the occipital cortex of the macaque that developed disease.
PrPres detected by proteinase K treatment with SAF32 anti PrP monoclonal antibody (kindly provided by Jacques
Grassi, CEA Saclay). The dense core of PrPres is surrounded by several vacuoles in a .brillar proteinaceous corona;
bar=10 m. (C) Positive PrPres staining in tonsil (80% of follicules stained positive) of the macaque that developed
disease; bar=50 m. (E) Negative PrPres staining in tonsil of the macaque that did not develop disease; bar=50 m.
(D) Western blot showing similar PrPres patterns in samples from a patient with vCJD (lane 1), the macaque that
developed disease (lane 3), and the bovine BSE inoculum (lane 4). By contrast, a macaque inoculated intracerebrally
with material from a patient with sporadic CJD showed a different PrPres pattern (lane 2).
For personal use. Only reproduce with permission from Elsevier Ltd
Research Letters
longer than that of intraspecies transmission (60 months
vs 44 and 47 months, representing 36% and 28%
increases, respectively). The interval between the period of
peak exposure to infectious BSE tissue and the hitherto
peak incidence of vCJD is about 10–15 years, but
incubation periods of up to 40 years have followed oral
infection with kuru between human beings.5 Therefore,
maximum incubation periods might exceed 50 years in
cases of oral transmission of BSE from cattle to man.
The present data do not provide a de.nitive minimum
infective dose for transmission of cattle BSE to primates,
but they do give enough information for a preliminary
assessment of the adequacy of existing measures to
protect the human food chain. Results of ongoing
experiments provide a rough estimation of the intraspecies
transmission rates in cattle. The BSE brain
inoculum to which the cattle were exposed had an
infectivity titre of 103·5 mouse infectious (intracerebral
and intraperitoneal) units ID50 per g (ID50 is the dose at
which 50% of animals become infected). Interim results
at 6 years after exposure suggest that the oral ID50 in
cattle may be between 100 mg and 1 g (table 1; S A C
Hawkins, T Konold, G A H Wells, unpublished data).
Since the brain of a cow weighs 500 g and a spinal cord
200 g, CNS tissues from a cow with clinical signs of BSE
could contain enough infective agent to transmit disease
orally to 490–1400 cows (70% of 700 g if 1g is needed, or
20% of 700 g if 100 mg is suf.cient), or to 70 primates
(50% of 700 g if 5 g represents the oral ID50).
The accuracy of estimates of the oral ID50 for man will
not be improved until completion, several years from
now, of a large dose-response European study (QLK1-
2002-01096) in macaques, in which the minimum dose
is 50 mg. However, because similar inocula were used in
both the cattle and macaque studies,6 a tentative comparison
can be made between the ef.ciency of oral infection
in cattle and that in primates. On this basis, a factor of
7–20 could be considered as the range of magnitude of a
bovine-to-primate species barrier for oral BSE infection
(70 primates infected compared with 490 or 1400 cows,
with a similar dose).
Elimination from the human food chain of CNS
tissues from cows with clinical BSE is estimated to have
reduced the risk of human exposure to the disease by
about 90%.7 Risk was further reduced in continental
Europe by systematic screening for the diagnostic
presence of PrPres in the brainstem of all cattle older than
30 months, and in the UK by the total interdiction of
cows older than 30 months. In an oral exposure study to
assess the pathogenesis of BSE in cattle, in which the
same European Union-evaluated test as we used in the
present study was applied to CNS tissues, some
preclinical cases of the disease were diagnosed.8
Using the same test, pooled brainstem from cows with
clinical BSE has yielded a endpoint titre of PrPres
corresponding to a 1-in-300 to 1-in-1000 dilution of
positive brainstem.6,9 If people were to eat CNS tissues
from a cow with preclinical BSE with a concentration of
PrPres just below the test detection limit of 1 in 300, they
would need to ingest at least 1·5 kg to reach the degree
of exposure equivalent to that in the 5 g of brain used for
oral transmission to the macaque in the present study. If
the oral ID50 for man was one log below this dose (ie,
similar to that in cattle, and not accounting for any
species barrier between cattle and man; see table), 150 g
of CNS tissue that tested falsely negative could represent
an infective dose. Because use of cattle brain and spinal
cord for human consumption is prohibited, and in view
of the existing mechanically recovered meat regulations,
a person would be very unlikely to ingest this amount of
cattle CNS tissue.
The minimum sensitivity of screening tests to detect
100% of BSE-infected animals has yet to be ascertained.
However, our results provide reassurance that BSE
screening procedures combined with CNS removal are
effective measures to protect the human food chain.
Contributors
J-P Deslys, C Lasmézas, and E Comoy were responsible for design and
management of this study. G Wells, S Hawkins, and T Konold were
responsible for the pathogenesis study in ruminants. C Lasmézas,
C Herzog, and N Lescoutra-Etchegaray were in charge of the primate
experiments. F Auvré undertook the biochemical analyses. N Salès was
responsible for the immunohistochemical analyses, which were done
by E Correia. C Lasmézas, E Comoy, F Mouthon, G Wells, P Brown, and
J-P Deslys drafted the manuscript.
Con.ict of interest statement
Commissariat à l'Energie Atomique owns a patent covering the BSE
diagnostic test commercialised by Bio-Rad. All authors had full access to
all data and had responsibility to submit for publication. The funding
sources had no role in the collection, analysis, and interpretation of
data, writing of the report, or decision to submit the paper for
publication.
2 www.thelancet.com Published online January 27, 2005 http://image.thelancet.com/extras/05let1056web.pdf
BSE bovine brain inoculum
100 g 10 g 5 g 1 g 100 mg 10 mg 1 mg 0·1 mg 0·01 mg
Primate (oral route)* 1/2 (50%)
Cattle (oral route)* 10/10 (100%) 7/9 (78%) 7/10 (70%) 3/15 (20%) 1/15 (7%) 1/15 (7%)
RIII mice (icip route)* 17/18 (94%) 15/17 (88%) 1/14 (7%)
PrPres biochemical detection
The comparison is made on the basis of calibration of the bovine inoculum used in our study with primates against a bovine brain inoculum with a similar PrPres concentration that was
inoculated into mice and cattle.8 *Data are number of animals positive/number of animals surviving at the time of clinical onset of disease in the .rst positive animal (%). The accuracy of
bioassays is generally judged to be about plus or minus 1 log. icip=intracerebral and intraperitoneal.
Table 1: Comparison of transmission rates in primates and cattle infected orally with similar BSE brain inocula
Research Letters
Acknowledgments
We gratefully acknowledge the expert care of the primate animals
provided by René Rioux, Sébastien Jacquin, and Anthony Fort, and the
technical expertise of Dominique Marcé, Capucine Dehen,
Sophie Freire, and Aurore Jolit Charbonnier. This work has received
.nancial support from the French Ministry of Research (GIS Prion). It is
now continued within the framework of the EU consortium QLK1-2002-
01096 and the European network of Excellence NeuroPrion. Ongoing
studies by the Veterinary Laboratories Agency in cattle are funded by the
UK Department for Environment, Food, and Rural Affairs.
References
1Anderson RM, Donnelly CA, Ferguson NM, et al. Transmission
dynamics and epidemiology of BSE in British cattle. Nature 1996;
382: 779–88.
2 Lasmézas CI, Deslys JP, Demaimay R, et al. BSE transmission to
macaques. Nature 1996; 381: 743–44.
3 Lasmézas CI, Fournier JG, Nouvel V, et al. Adaptation of the bovine
spongiform encephalopathy agent to primates and comparison with
Creutzfeldt-Jakob disease: implications for human health. Proc Natl
Acad Sci USA 2001; 98: 4142–47.
4 Herzog C, Salès N, Etchegaray N, et al. Tissue distribution of bovine
spongiform encephalopathy agent in primates after intravenous or
oral infection. Lancet 2004; 363: 422–28.
5 Klitzman RL, Alpers MP, Gajdusek DC. The natural incubation
period of kuru and the episodes of transmission in three clusters of
patients. Neuroepidemiol 1984; 3: 3–20.
6 Deslys JP, Comoy E, Hawkins S, et al. Screening slaughtered cattle
for BSE. Nature 2001; 409: 476–78.
7 European Commission. Opinion of the Scienti.c Steering
Committee on the Human Exposure Risk via food with respect to
BSE. Adopted on 10 December 1999. http://europa.eu.int./comm/
food/fs/sc/ssc/out67_en.pdf (accessed Jan 17, 2004).
8 Grassi J, Comoy E, Simon S, et al. Rapid test for the preclinical
postmortem diagnosis of BSE in central nervous system tissue.
Vet Rec 2001; 149: 577–82.
9 Moynagh J, Schimmel H. Tests for BSE evaluated. Bovine
spongiform encephalopathy. Nature 1999; 400: 105.
www.thelancet.com Published online January 27, 2005 http://image.thelancet.com/extras/05let1056web.pdf 3
mark purdey wrote;
How do you explain the emergence of BSE farms that never fed any meat and bone meal in any of its various guises ? I could take you to many such farms around me .
TSS WRITES;
please do. show us the data. were there ever sheep and goats there?
was there ever tainted feed there? history of these cattle from birth to date?
history of these farm feeding practices please? please show us the data?
mark purdey wrote;
These and many other flaws that have been cited in the official feed theory and recorded in my publications, clearly indicate that the meat and bone meal theory is discredited.
TSS WRITES;
this is totally false. the many transmission studies do not lie.
amplification and transmission. the feed theory as you call it is NOT a theory.
it is fact, proven time and time again. the 44 tons or so of UK mbm the USA
imported into the USA was a small amount compared to other BSE docoumented
countries. but this does not really matter if you consider the USAs own history
of TSE and the feeding of TSE tainted rendered products back to animals for
human consumption. ...TSS
mark purdey wrote;
Here in the UK , honest vets and farmers will openly admit that the meat and bone meal theory served as a convenient cover story that was exploited in order to show the world that British beef was now safe because the feed that was supposedly responsible had been banned.
So the theory was used as a politically and commercially convenient cover story . However, once other countries were forced into the BSE battlefield because of BSE breakdowns in their own herds, the momentum of this myth simply kept on rolling to such an extent that the bureaucracies and government depts could never back out of it .
So, in respect of my own first hand experience of BSE here in the UK, I have to say that anybody who promotes this THEORY on the cause of TSEs is merely thwarting the healthy and productive evolution of TSE science.
Why can't we admit to the flaws and the political lies, and simply get on with looking for the truth .
My research may well be objectionable to certain people or vested interests because it does not suit their particular agenda or whatever, but, the bottom line is that I am in pursuit of the truth. Whether I am talking about nerve agent dumping in the UK seas, or crashed japanese bombers in the territories of the New Quinea Fore tribe , or scrapie clusters in sheep grazing former military controlled firing ranges, I am speaking from first hand experience , having personally visited these areas, interviewed the people involved , collected analytical evidence . I have photos , documentation, data , video as proof. Nobody can take these first hand experiences away from me. Whether you listen, that's up to you. I am just carrying on with my research.
TSS wrote;
transmission, transmission, transmission, and your OP theory does not transmit. amplification and transmission! this has well been proven via MBM time and time again. good luck on the origin of TSE anyway. i wish you the best, but in finding the origin, this will NOT stop the agent from spreading. you have to stop it at its source i.e. the feeding of tainted ruminant protein to animals for human/animal consumption for one. secondary transmission via the surgical and medical arenas, and other modes of transmission will also play a crutial roll in the spreading of TSEs. these must be stopped in there tracks too. these early transmission studies are but a few of many more. the later transmission studies (posted here on this list for those interested in the transmission of these TSEs) the more recent ones are from much less tainted materials than originally thought to infect a species. science is still in the very early days of TSE research. there are many unanswered questions still left to answer. but to flagrantly ignore the transmission studies, will only allow this agent to further spread, expose, and kill. ... TSS
EUROPEAN COMMISSION
HEALTH & CONSUMER PROTECTION DIRECTORATE-GENERAL
Scientific Steering Committee
OPINION ON
ORGANOPHOSPHATE (OP) POISONING AND
HYPOTHETICAL INVOLVEMENT IN THE ORIGIN OF BSE
Background
In its opinion on possible links between BSE and Organophosphates adopted on 25-26 June
1998 and in its opinion on Hypotheses on the origin and transmission of BSE adopted on 29-
30 November 2001 the SSC concluded that there is no scientific evidence in support of the
hypothesis of an OP origin of BSE.
The issue of organophosphate poisoning has not been dealt with by the SSC so far. The
concerns expressed in the enquiries cover mainly intoxication by occupational exposure of
shepherds and farmers to OPs upon use against ecto-parasites, especially in sheep dipping and
treatment of cattle against Warble Fly infestation. Risks from residues are addressed to a
lesser extend.
In early 2003, a large number of additional enquiries on the issue have been addressed to
European Commission's Health and Consumer Directorate General. Four of these with
substantial enclosures were by one person. Most of them are addressing both issues: chronic
organophosphate (OP) poisoning and the origin of BSE.
Information provided with the enquiries
In addition to numerous newspaper and magazine articles the enclosures to the enquiries
provide the Material Safety Data Sheet on diazinon, the OHSA Occupational Safety and
Health Guideline for Tetraethylpyrophosphate (TEPP), an US agency Hazardous Substances
Fact Sheet on crufomate, company safety information sheets, some correspondence with UK
authorities including their activities to improve safe use of these chemicals. The information
regarding claimed OP chronic poisoning of cases presented does not provide evidence, neither
for OPs being the cause for diseases nor for their exclusion (i.e., "very low" bloodcholinesterase
levels, provided without data or comparison with the normal distribution of
values; successful treatment of a patient for OP clearance without giving any OP data). It
C:\WINNT\Temporary Internet Files\SSC_Last_OP_Final.doc 2
seems however, that due to insufficient, non-prudent use of the safety requirements undue
exposures of shepherds and farmers have occurred.
There is no additional information on the claimed involvement of OPs in the origin of BSE.
This applies for both, the hypotheses on the direct effect of OPs as well as on their
hypothetical role for Cu-deficiency to be involved in the origin of BSE (Cu binding of prion
protein is known). New publications are mentioned in one enquiry but they have not yet been
provided. In an Internet search no recent scientifically valid publications were traceable. The
SSC had been informed that research would be launched on this hypothesis, but no
information has been provided so far on its status or on results.
Conclusions
a) As regards the involvement of organophosphates in the origin of BSE, no new scientific
information providing evidence or supporting the hypothesis by valid data became
available after the adoption of the last opinion of the SSC on this issue. Consequently
there is no reason for modifying the existing opinions.
b) Regarding the possibility of OP poisoning, the European legislation for registration of
plant protection products and veterinary medicines – addressed in the enquiries – provide
the basis for safe use of registered compounds and their formulations. Regarding the
alleged intoxication cases reported and OP exposure it must be concluded that safety
measures may not have been strictly followed.
References
Brown, D.R., Qin, K., Herms, J.W., Madlung, A., Manson, J., Strome, R., Fraser, P.E., Kruck, T., von
Bohlen, A., Schulz- Schaeffer, W., Giese, A., Westaway, D. and Kretzschmar, H. (1997) The Cellular
Prion Protein Binds Copper In Vivo, Nature, 390, 684-7.
Purdey, M. (2000) Ecosystems Supporting Clusters of Sporadic TSEs Demonstrate Excesses of the Radical-
Generating Divalent Cation Manganese and Deficiencies of Antioxidant Co-Factors Cu, Se, Fe, Zn Medical
Hypotheses, 54, 278-306.
Scientific Steering Committee, 1998. Opinion on possible links between BSE and Organophosphates. Adopted
on 25-26 June 1998
Scientific Steering Committee, 2001. Opinion on Hypotheses on the origin and transmission of BSE. Adopted
on 29-30 November 2001.
http://europa.eu.int/comm/food/fs/sc/ssc/out356_en.pdf
TSS